Contents lists available at ScienceDirect

# Journal of Magnetic Resonance

journal homepage: www.elsevier.com/locate/jmr

# Zeeman shift – A tool for assignment of <sup>14</sup>N NQR lines of nonequivalent <sup>14</sup>N atoms in powder samples

J. Luznik<sup>a</sup>, V. Jazbinsek<sup>a</sup>, J. Pirnat<sup>a</sup>, J. Seliger<sup>b</sup>, Z. Trontelj<sup>a,\*</sup>

<sup>a</sup> Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
<sup>b</sup> J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

#### ARTICLE INFO

Article history: Received 10 February 2011 Revised 30 May 2011 Available online 1 July 2011

Keywords: Zeeman perturbed NQR Line shapes in powder samples

## ABSTRACT

The use of Zeeman perturbed <sup>14</sup>N nuclear quadrupole resonance (NQR) to determine the  $\nu_+$  and  $\nu_-$  <sup>14</sup>N lines in polycrystalline samples with several nonequivalent nitrogen atoms was investigated. The <sup>14</sup>N NQR line shift due to a weak external Zeeman magnetic field was calculated, assuming isotropic distribution of EFG tensor directions. We calculated the broad line distribution of the  $\nu_+$  and  $\nu_-$  line shifts and experimentally confirmed the calculated Zeeman field dependence of singularities (NQR peaks) in cyclotrimethylenetrinitramine (RDX) and aminotetrazole monohydrate (ATMH). The calculated and measured frequency shifts agreed well. The proposed measurement method enabled determination of which <sup>14</sup>N NQR lines in ATMH belong to  $\nu_+$  and which to  $\nu_-$  transitions.

© 2011 Elsevier Inc. All rights reserved.

### 1. Introduction

The nuclear quadrupolar interaction is described in the presence of a small external magnetic field by a two term Hamiltonian: the leading quadrupolar term and the perturbing Zeeman term.

$$H = H_0 + H_Z \tag{1}$$

For the case of spin I = 1 <sup>14</sup>N nuclei with  $\eta \neq 0$ , the leading term gives three energy levels and three allowed transitions with the corresponding frequencies [1,2] shown in Fig. 1:

$$v_{+} = \frac{3e^{2}qQ}{4h}\left(1 + \frac{\eta}{3}\right), \quad v_{-} = \frac{3e^{2}qQ}{4h}\left(1 - \frac{\eta}{3}\right) \text{ and}$$
$$v_{0} = \frac{e^{2}qQ}{2h}\eta \tag{2}$$

Here  $e^2 qQ/h$  is the quadrupole coupling constant  $Q_{cc}$ ,  $eq = V_{zz}$  is maximal component of the electric field gradient tensor, eQ is nuclear quadrupole moment and  $\eta = (V_{xx} - V_{yy})/V_{zz}$  is asymmetry parameter.

Several analyses of the influence of Zeeman magnetic field on pure NQR resonance lines were made [3–7]. In the presence of a small Zeeman magnetic field *B* and with a <sup>14</sup>N Larmor frequency  $v_L = \gamma B/2\pi \ll v_0$ , the second-order perturbation theory gives a new set of transition frequencies [7,8]:

$$\begin{split} v_{+}^{*} &= v_{+} + \frac{4v_{L}^{2}}{Q_{cc}} \left( \frac{2\sin^{2}\theta\cos^{2}\phi}{3+\eta} + \frac{\sin^{2}\theta\sin^{2}\phi}{3-\eta} + \frac{\cos^{2}\theta}{2\eta} \right) \\ &= v_{+} + \frac{4v_{L}^{2}}{Q_{cc}} f_{+}(\theta,\phi,\eta) \\ v_{-}^{*} &= v_{-} + \frac{4v_{L}^{2}}{Q_{cc}} \left( \frac{\sin^{2}\theta\cos^{2}\phi}{3+\eta} + \frac{2\sin^{2}\theta\sin^{2}\phi}{3-\eta} - \frac{\cos^{2}\theta}{2\eta} \right) \\ &= v_{-} + \frac{4v_{L}^{2}}{Q_{cc}} f_{-}(\theta,\phi,\eta) \\ v_{0}^{*} &= v_{0} + \frac{4v_{L}^{2}}{Q_{cc}} \left( \frac{\sin^{2}\theta\cos^{2}\phi}{3+\eta} - \frac{\sin^{2}\theta\sin^{2}\phi}{3-\eta} + \frac{\cos^{2}\theta}{\eta} \right) \\ &= v_{0} + \frac{4v_{L}^{2}}{Q_{cc}} f_{0}(\theta,\phi,\eta) \end{split}$$
(3)

Here  $\theta$  is the angle between the Zeeman magnetic field and the principal *Z*-axis of the EFG tensor and  $\phi$  is corresponding azimuthal angle. These transition frequencies are sample orientation dependent and this dependence can be well observed in a single crystal measurement. It is not always clear to which transitions belong the measured NQR lines. The aim of this research was to obtain an improvement in identification of measured NQR transition frequencies. In polycrystalline (powder) samples, which we usually have when identifying illicit substances or studying polymorphism, the orientations of the EFG tensor are randomly distributed. To calculate the line shape(s) for a powder sample, we assume an isotropic distribution of the EFG tensor directions, i.e. homogeneous distribution of cos  $\theta$  and  $\phi$  values in the (cos  $\theta$ ,  $\phi$ ) plane:

$$\frac{1}{N}\frac{dN}{d\Omega} = \frac{1}{N}\frac{dN}{d(\cos\theta)d\phi} = \frac{1}{4\pi}$$
(4)



<sup>\*</sup> Corresponding author. Address: IMFM, Jadranska 19, 1000 Ljubljana, Slovenia. Fax: +386 1 2517281.

E-mail address: zvonko.trontelj@fmf.uni-lj.si (Z. Trontelj).

<sup>1090-7807/\$ -</sup> see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2011.06.023



Fig. 1. Quadrupole energy levels and allowed transitions for a spin 1 nucleus.

*N* is here the total number of nuclei contributing to the observed signal distribution. In calculating the powder line shape we limit ourselves to the  $v_+$  and  $v_-$  lines. The  $v_0$  transition lines are at present less important since they are given by the difference of the  $v_+$  and  $v_-$  lines, as in the unperturbed case. The  $f_+(\theta, \phi, \eta)$  and  $f_-(\theta, \phi, \eta)$  dependences in expression (3) can be graphically represented in the (cos  $\theta$ ,  $\phi$ ) plane as lines of equal frequency shift  $p_+$  for  $v_+$  and  $p_-$  for  $v_-$  lines:

$$f_+(\theta,\phi,\eta) = p_+$$
 and  $f_-(\theta,\phi,\eta) = p_-$  (5)

From (3) and (5) we can obtain a suitable expression which enables us to draw a map of the lines of equal frequency shift  $p_{\pm}$ :

$$\cos \theta_{+}(\phi, \eta, p_{+}) = \sqrt{\frac{p_{+} - 2\cos 2\phi/(3+\eta) - \sin^{2}\phi/(3-\eta)}{1/2\eta - 2\cos^{2}\phi/(3+\eta) - \sin^{2}\phi/(3-\eta)}}$$
$$\cos \theta_{-}(\phi, \eta, p_{-}) = \sqrt{\frac{p_{-} - \cos^{2}\phi/(3+\eta) - 2\sin^{2}\phi/(3-\eta)}{-1/2\eta - \cos^{2}\phi/(3+\eta) - 2\sin^{2}\phi/(3-\eta)}}$$
(6)

A typical example for  $\eta = 0.5$  is shown in Fig. 2. Because of the isotropic distribution of EFG orientations in the  $(\cos \theta, \phi)$  plane, the contribution to the broadened NQR signal with a certain frequency shift  $p_{\pm}$  is proportional to the area  $dS_{\pm}(p_{\pm})$  of the band between two consecutive lines  $p_{\pm}$  and  $p_{\pm} + dp_{\pm}$ . The contribution of all relevant quadrupole nuclei in a sample to the NQR signal is maximal where the area between two consecutive  $p_{\pm}$  – lines of equal frequency shift in Fig. 2 is maximal, i.e. for the values of  $p_{\pm}$  on the line inside the designated band in Fig. 2. It is evident that the points at  $\phi = 0$ ,  $\pi$ ,  $2\pi$  and  $\cos \theta = 0$  belong to the layer contributing to the maxima in the intensity of the  $v_+$  and  $v_-$  lines. The maximum for the  $v_+$  line is at  $p_+ = 2/(3 + \eta)$  and for the  $v_-$  line at  $p_- = 1/(3 + \eta)$  given by the following expression:

$$(v_{+}^{*})_{\max} = v_{+} + \frac{4v_{L}^{2}}{Q_{cc}}\frac{2}{3+\eta} \quad (v_{-}^{*})_{\max} = v_{-} + \frac{4v_{L}^{2}}{Q_{cc}}\frac{1}{3+\eta}$$
(7)

The dependence of band area on *p* is obtained by calculating the integrals  $\int_0^{2\pi} d(\cos \theta_+(\phi, \eta, p_+))d\phi$  and  $\int_0^{2\pi} d(\cos \theta_-(\phi, \eta, p_-))d\phi$ 



**Fig. 3.** The calculated broad <sup>14</sup>N line shapes (for  $v_{+}$  and  $v_{-}$  <sup>14</sup>N NQR resonance lines) for  $\eta = 0.5$  in a powder sample subjected to a weak Zeeman field.

$$I_{+}(\eta, p_{+}) = \frac{1}{N} \frac{dN(p_{+})}{dp} = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{d(\cos \vartheta_{+})}{dp} d\phi$$
$$I_{-}(\eta, p_{-}) = \frac{1}{N} \frac{dN(p_{-})}{dp} = \frac{1}{4\pi} \int_{0}^{2\pi} \frac{d(\cos \vartheta_{-})}{dp} d\phi$$
(8)

Considering (3) and calculating the expressions for  $I_+(\eta, p_+)$  and  $I_-(\eta, p_-)$  enabled us to obtain the  $v_+$  and  $v_-$  line shapes. The calculated shapes of the  $v_+$  and  $v_-$  lines for  $\eta = 0.5$  in a powder sample is shown in Fig. 3. The natural NQR line widths are not considered in this presentation. Distinct, measurable differences in the  $v_+$  and  $v_-$  line shifts distributions can be used for NQR line characterization.

The shift of maximum of the  $v_+$  line is twice as large as that of the  $v_{-}$  line. Also the  $v_{+}$  line is much narrower than the  $v_{-}$  line. The broadening for the  $v_{-}$  line is greater than that for the  $v_{+}$  line because the defined values of parameter  $p_+$  are  $p_+ \in \left[\frac{1}{3-\eta}, \frac{1}{2\eta}\right]$  for the  $v_+$  line and  $p_{-} \in \left[-\frac{1}{2n}, \frac{2}{3-n}\right]$  for the  $v_{-}$  line. Consequently, the  $v_{-}$  line experiences a faster decrease in intensity when the Zeeman field is applied. In Figs. 2 and 3 we present the case for  $\eta = 0.5$ . For smaller  $\eta$  values similar dependences of transition frequency shifts are obtained, as long as the condition  $v_I = v B/2\pi \ll v_0$  is fulfilled, except that the broadenings of the shifted lines are stronger, as follows from the allowed value of parameter p. (For  $\eta = 0$  when  $v_{+} = v_{-}$  there is no frequency shift, only symmetric broadening proportional to  $v_L$  appears.). The opposite is true for higher  $\eta$  values where the broadening of the shifted lines is smaller. For instance for  $\eta = 1$  there is no broadening for the  $v_+$  NQR transition line. It is only shifted to higher frequencies. However, for the  $v_{-}$  line the broadening still takes place.

In the above approximation we assumed that the sample response to the RF excitation is also isotropic. That could be achieved by the use of a large sample in a coil of length shorter than its diameter. In this coil the RF excitation directions are strongly spatially dependent. Normally, we take into account the EFG tensor orientations with its *x*-axis for the  $v_+$  and *y*-axis for the  $v_-$  transitions parallel to the RF excitation as privileged in the



**Fig. 2.** Lines of equal frequency shift of  $v_+$  (panel a) and  $v_-$  (panel b) transitions for  $\eta = 0.5$ . The band with maximal area between two neighboring lines of equal frequency shift is shaded.

detection efficiency. Consequently, the NQR line shape depends on the angle between Zeeman and RF field orientation. The two extreme situations are: RF field parallel and RF field perpendicular to Zeeman field.

The contribution of nuclei with different orientations to the signal intensity is proportional to the cosine square of the angle between RF field and principal *x*-axis of the EFG tensor for the  $v_+$  transitions (*y*-axis for the  $v_-$  transitions). This can be included into the calculation of the line shape. When RF field is parallel with Zeeman field, mainly the nuclei with orientations  $\cos \theta = 0$  for the  $v_+$  and  $v_-$  transitions are excited. Contributions of nuclei with other orientations are proportional to  $\cos^2(\theta - \pi/2) = \sin^2\theta$ . The expected line shapes can be calculated also in this case. We have to consider the integrals:

$$I_{+}(\eta, p_{+}) \propto \frac{1}{4\pi} \int_{0}^{2\pi} \frac{d(\cos \vartheta_{+})}{dp} \sin^{2} \vartheta_{+} d\phi \quad \text{and} \\ I_{-}(\eta, p_{-}) \propto \frac{1}{4\pi} \int_{0}^{2\pi} \frac{d(\cos \vartheta_{-})}{dp} \sin^{2} \vartheta_{-} d\phi$$
(9)

The calculated line shape is shown in Fig. 4a. Similarly, the angular dependence can be included in a line shape calculation also for the orientation of RF field perpendicular to Zeeman field with  $\sin^2\phi$  for the  $v_+$  and  $\cos^2\phi$  for the  $v_-$  transition dependences:

$$I_{+}(\eta, p_{+}) \propto \frac{1}{4\pi} \int_{0}^{2\pi} \frac{d(\cos \vartheta_{+})}{dp} \sin^{2} \phi \, d\phi \quad \text{and}$$
$$I_{-}(\eta, p_{-}) \propto \frac{1}{4\pi} \int_{0}^{2\pi} \frac{d(\cos \vartheta_{-})}{dp} \cos^{2} \phi \, d\phi$$

The result is shown in Fig. 4b.

It can be seen (Fig. 4) that the expected shifts for both lines are limited with the intervals  $f_+ \in [0.4, 1]$  for the  $v_+$  and  $f_- \in [-1, 0.8]$ for the  $v_{-}$  transitions. Maxima of the intensity are expected at 0.57 for the  $v_+$  and at 0.29 for the  $v_-$  transition lines. Usually, the frequency shifts are only a few natural line widths, because for higher Zeeman fields the decrease in the intensity of both lines is too strong and the signals cannot be observed. With standard measurements we ordinary cannot see the exact structures of the shifted lines, but only a superposition of natural broadening and frequency shifts, manifesting as very broad lines around centers of gravity (Fig. 4). It is evident that for the orientation with RF and Zeeman field being parallel a rather small difference of shifts for the  $v_{+}$  and  $v_{-}$  lines causes difficult resolution of both lines. Opposite is true for perpendicular orientation of the two fields where the  $v_{-}$  line is less shifted towards the higher frequency and the difference in shift between both lines can be observed easier. To see experimentally the difference between the  $v_{+}$  and  $v_{-}$  lines a perpendicular orientation of RF and Zeeman field is recommended.

#### 2. Experimental

Our first experiments were performed with the explosive RDX ( $C_3H_6N_6O_6$ ). Here there are three sets of  $\nu_+$ ,  $\nu_-$  and  $\nu_0$  transition frequencies for the three different ring positions of <sup>14</sup>N nuclei in the molecule [9,10]. We chose RDX because it gives very well resolved <sup>14</sup>N NQR spectra in a short measuring time. The data for the <sup>14</sup>N NQR transition frequencies are collected in Table 1.

For all three sets of lines the asymmetry parameter  $\eta \sim 0.6$  and the quadrupole coupling constant  $Q_{cc}$  is between 5600 kHz and 5800 kHz. In a Zeeman magnetic field  $B \sim 20$  mT we expect from (7) frequency shifts of around 1400 Hz and 700 Hz for the  $v_+$  and  $v_-$  lines, respectively. The calculated values are in good agreement with our experimental results (Table 1).

With longer averaging we can get in RDX sufficiently well resolved signals also in the presence of Zeeman magnetic field. The influence of a 25 mT magnetic field on middle pair of the  $v_+$ ,  $v_$ transition lines (5191 kHz, 3410 kHz), obtained after a long averaging (100.000 averages) is shown in Fig. 5. Not only the shifts, but also the structures of the shifted lines can be seen. Comparing shapes of the measured and calculated lines (Fig. 5) a good agreement can be clearly observed. The shift of  $y_{-}$  line is smaller and the line is asymmetrically broadened towards lower frequency from the peak value. For  $v_{+}$  line the shift is bigger and the line is asymmetrically broadened towards higher frequency. From Fig. 5 we can see that the calculated shifts at 25 mT are  $\Delta v_{+}$  = 2500 Hz and  $\Delta v_{-}$  = 1200 Hz. From Table 1 we see that the measured shifts at 20 mT are 1500 Hz and 750 Hz. Considering the B<sup>2</sup> dependence of shifts, the agreement is good. Because of geometrical constraints in our Zeeman field generator only measurements with perpendicular orientation of RF and Zeeman field could be completed.

We also measured the orientation dependence of RF field on Zeeman field, however, with lower resolution. That means the measured RDX sample was small (15 mm, 7 mm diameter). It was placed in the middle of 25 mm solenoid RF coil. This RF coil enabled a complete rotation in the volume of constant Zeeman field generated by an electromagnet. We measured the angular dependence of frequency shift and line broadening in a constant Zeeman field of around 25 mT for the  $v_+$  and  $v_-$  transition lines. The average frequency shift and broadening for all three  $v_-$  lines

Table 1

Measured RDX <sup>14</sup>N NQR transition frequencies  $\nu_{*}$  and  $\nu_{-}$ , asymmetry parameters, quadrupole coupling constants and frequency shifts  $\Delta\nu_{*}$  and  $\Delta\nu_{-}$  in a 20 mT (200 Gauss) Zeeman magnetic field oriented perpendicular to the RF field (all at 298 K).

| v+ (kHz) | $v_{-}$ (kHz) | v <sub>0</sub> (kHz) | η    | $Q_{cc}$ (kHz) | $\Delta v_{+}$ (Hz) | $\Delta v_{-}$ (Hz) |
|----------|---------------|----------------------|------|----------------|---------------------|---------------------|
| 5239     | 3458          | 1781                 | 0.61 | 5800           | 1400                | 700                 |
| 5191     | 3410          | 1781                 | 0.62 | 5735           | 1500                | 750                 |
| 5046     | 3359          | 1687                 | 0.60 | 5605           | 1500                | 750                 |



**Fig. 4.** The calculated line shapes for the NQR ν<sub>+</sub> and ν<sub>-</sub> transitions, as well as their centers of gravity (doted lines) for (a) parallel and (b) perpendicular orientation of RF field and Zeeman field. η = 0.5 in both cases.



**Fig. 5.** RDX powder sample at 295 K: the shift and broadening of (a) $v_{+}$  at 5191 kHz and (b)  $v_{-}$  at 3410 kHz <sup>14</sup>N NQR lines in 25 mT magnetic field oriented perpendicular to RF field. The measured lines at *B* = 0 and calculated lines at 25 mT field are also shown. (The low homogeneity of Zeeman field caused additional broadening.)



**Fig. 6.** Angular dependence of frequency shift and line broadening for the average of all three  $v_{-}$  lines in RDX for different angles between RF and Zeeman field. Angle 0 means RF field is parallel with Zeeman field.

is shown in Fig. 6. While we were not able to see any significant orientation dependence in the frequency shift for the  $v_+$  lines, we noticed that their broadenings were slightly lower for parallel orientation of RF and Zeeman field. In Fig. 4 one can see that the shift of the center of gravity for the  $v_-$  lines is about one order of magnitude bigger than for the  $v_+$  lines when we move from parallel to perpendicular orientation of RF and Zeeman field. Due to rather low s/n ratio and correspondingly low resolution of NQR signals we have been able to measure only a shift of the centers of gravity of the three averaged  $v_-$  NQR lines in RDX at different angles between RF and Zeeman field shown in Fig. 6.

Similar measurements were performed with aminotetrazole (ATZ)-CH<sub>3</sub>N<sub>5</sub> and aminotetrazole monohydrate (ATZMH)-CH<sub>3</sub>N<sub>5</sub>H<sub>2</sub>O [11,12]. The measured results for ATZMH are collected in Table 2.

Again, we observed larger frequency shifts  $(\Delta v_+ = (v_+^*)_{max} - v_+)$  for  $v_+$  transition lines in accordance with expression (7), though ATZMH has a diversity of asymmetry parameters and quadrupole

#### Table 2

Aminotetrazole monohydrate: the measured <sup>14</sup>N NQR transition frequencies, asymmetry parameters, quadrupole coupling constants and frequency shifts in a 20 mT Zeeman magnetic field oriented perpendicular to RF field at 298 K.

| v+ (kHz) | $v_{-}$ (kHz) | $v_0$ (kHz) | η    | $Q_{cc}$ (kHz) | $\Delta v_{+}$ (Hz) | $\Delta v_{-}$ (Hz) |
|----------|---------------|-------------|------|----------------|---------------------|---------------------|
| 2732     | 1490          | 1242        | 0.88 | 2815           | 3000                | 2000                |
| 3610     | 2811          | 799         | 0.37 | 4280           | 1800                | 1000                |
| 3699     | 2222          | 1477        | 0.75 | 3945           | 1700                | 900                 |
| 3327     | 2430          | 897         | 0.47 | 3840           | 1800                | 800                 |
| 3141     | 1928          | 1214        | 0.72 | 3380           | 2400                | 1000                |



**Fig. 7.** Frequency shifts vs. applied magnetic field for  $v_{+}$  = 3610 kHz and  $v_{-}$  = 2811 kHz <sup>14</sup>N NQR lines in aminotetrazole monohydrate (ATZMH).

coupling constants. For the pair of <sup>14</sup>N NQR lines  $v_+$  = 3610 kHz and  $v_-$  = 2811 kHz we measured the frequency shift dependence on the applied small Zeeman magnetic field (Fig. 7). The <sup>14</sup>N NQR frequency shifts demonstrated a quadratic dependence on magnetic field. This is in agreement with expression (7). Having five different <sup>14</sup>N nuclei in the ATZMH molecule, the frequency shift of all five lines in the same Zeeman magnetic field can be compared (Fig. 8). The two groups of measurements, corresponding to five  $\Delta v_+$  and five  $\Delta v_-$  frequency shifts of <sup>14</sup>N NQR lines in ATZMH follow lines differing in slope by a factor of 2. That follows from expression (7) if one draws  $\Delta v_+$  and  $\Delta v_-$  vs.  $1/{Q_{cc}(3 + \eta)}$ . The measured points are partly



**Fig. 8.** Comparison of  $\Delta v_+$  and  $\Delta v_-$  shifts vs.  $1/\{Q_{cc}(3 + \eta)\}$  for all five  $v_+$  and five  $v_-$  <sup>14</sup>N NQR transition lines of ATZMH in a 20 mT Zeeman magnetic field.

scattered because the applied field influences the signal intensity and s/n ratio. Namely, for a small applied Zeeman magnetic field the frequency shift is also small and hard to determine because the natural line width of the unperturbed line impedes observation of the much smaller frequency shift. On the other hand, with increase of Zeeman magnetic field the intensities of the shifted lines decrease rapidly due to line broadening.

#### 3. Discussion and conclusions

Due to its ability to identify specific molecules, nuclear quadrupole resonance (NOR), improved in last years, has become a powerful radio-frequency spectroscopic method in basic research in solid state physics and chemistry, as well as in pharmaceutical research and production for nondestructive chemical analysis and polymorph determination. The use in detecting and/or diagnostic application of <sup>14</sup>N NQR in identifying different illicit materials, like explosives, narcotics and counterfeit drugs, is becoming more and more important. By adding a small external Zeeman magnetic field to polycrystalline samples we obtained an additional tool which will further increase the identification power of <sup>14</sup>N NQR in detection of illicit materials. This is a valuable improvement because searching for unknown NQR frequencies of new substances is often a very time consuming task. Some improvements are known such as the application of the nuclear quadrupole double resonance (NQDR) technique [13]. The advantage of NQDR is its high sensitivity but the resolution is usually low. A possible and faster procedure is to locate the unknown NQR frequencies with the NQDR method first and then to refine the frequency resolution by repeating the measurement with the standard pulse NQR technique and applying polarization enhanced NQR (PENQR) [14] if needed. Unfortunately, in several cases the use of the NODR method is not possible due to too short proton spin-lattice relaxation time. We were faced with this problem in the study of <sup>14</sup>N NQR in ATZ, ATZMH and the pharmaceutically interesting compound famotidine (C<sub>8</sub>H<sub>15</sub>N<sub>7</sub>O<sub>2</sub>S<sub>3</sub>) [15]. The common search procedure for unknown NQR resonance lines in such a case is to go step by step over the entire frequency range. If we choose small frequency steps we spend too much time. With larger frequency steps the procedure is faster, but we can overlook some transitions. After finding the NOR transition lines we propose application of small Zeeman magnetic field and measurements of the frequency shifts of all <sup>14</sup>N NQR lines found. It is important that the NQR lines are not broadened too much. Using expression (7) and the procedure demonstrated in Fig. 8 we can determine which of NQR lines belong to  $v_+$  and which to  $v_-$  transitions. This way we also obtained all possible values for  $v_0$  transitions. The necessary confirmation of  $v_0$  transitions, ordinary extremely time consuming, because of very low frequencies and correspondingly low s/n ratio, is improved with the suggested technique. In addition, using this technique, we obtained a hint where to continue the search for possibly overlooked NQR lines. The knowledge of NQR lines assignation in similar compounds is also helpful. The NQR line assignation in tetrazole (TZ) [11] was useful for us when studying ATZ and ATZMH.

In conclusion we can say that the suggested application of a small external perturbing Zeeman magnetic field to a powder sample, for which the unknown <sup>14</sup>N NQR line pairs  $v_+$  and  $v_-$  need to be determined, can be of considerable help in some cases in the final assignment of  $v_+$  and  $v_-$  <sup>14</sup>N NQR lines for all nonequivalent nitrogen atoms in a given substance. This technique was proven to be useful in ATZ, ATZMH and famotidine powder samples. Here the double resonance technique could not help us in searching for the unknown <sup>14</sup>N NQR lines due to too short proton spin–lattice relaxation time.

#### Acknowledgment

This work was partially supported by the Grant ARRS J7-9704 from the Slovenian Research Agency.

#### References

- T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Solid State Physics, Academic Press, New York, 1958. Suppl. 1.
- [2] A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, 1961.
- [3] H. Negita, K. Shibata, T. Kubo, <sup>14</sup>N Nuclear quadrupole resonances of 2aminopyrimidine, Bull. Chem. Soc. Jpn. 46 (1973) 110–113.
- [4] Y. Morino, M. Toyama, Zeeman effect of the nuclear quadrupole resonance spectrum in crystalline powder, J. Chem. Phys. 35 (1961) 1289–1297.
- [5] O. Ege, S. Nishijima, E. Kimura, H. Akiyama, S. Hamai, H. Negita, Powder Zeeman NQR study on the absorption forms for nuclear spin 5/2, Z. Naturforsch. 53a (1998) 314–317.
- [6] H.R. Brooker, R.B. Creel, Zeeman nuclear quadrupole resonance line shapes in powders (*I* = 3/2), J. Chem. Phys. 61 (1974) 3658–3665.
- [7] K.J. Kim, S.H. Choh, Magnetic resonance of ferroelectric NaNO<sub>2</sub>, IV. Zeeman effect on <sup>14</sup>N nuclear quadrupole resonance in single crystals, J. Kor. Phys. Soc. 17 (1984) 336–339.
- [8] V.S. Grechishkin, N.E. Ajnbinder, Nuclear Spin Resonance, Sov. Phys. Uspekhi 6 (1964) 566–587.
- [9] R.J. Karpowicz, T.B. Brill, Librational motion of hexahydro-1,3,5-trinitro-striazine based on the temperature dependence of the <sup>14</sup>N quadrupole resonance spectra, J. Phys. Chem. 87 (1983) 2109–2112.
- [10] T.N. Rudakov, V.T. Mikhaltsevich, O.P. Selchikhin, The use of multi-pulse nuclear quadrupole resonance techniques for the detection of explosives containing RDX, J. Phys. D: Appl. Phys. 30 (1997) 1377–1382.
- [11] H. Palmer, D. Stephenson, J.A.S. Smith, <sup>14</sup>N Quadrupole coupling tensors in solid pyrazole, 1H-1,2,4-triazole and 1H-tetrazole: theory and experiment, Chem. Phys. 97 (1985) 103–111.
- [12] J. Pirnat, J. Luznik, V. Jazbinsek, V. Zagar, J. Seliger, T.M. Klapötke, Z. Trontelj, <sup>14</sup>N NQR in the tetrazole family, Chem. Phys. 364 (2009) 98–104.
- [13] R. Blinc, T. Apih, J. Seliger, Nuclear quadrupole double resonance techniques for the detection of explosives and drugs, Appl. Magn. Reson. 25 (2004) 523– 534.
- [14] J. Luznik, J. Pirnat, V. Jazbinsek, T. Apih, A. Gregorovic, R. Blinc, J. Seliger, Z. Trontelj, Polarization enhanced "Single Shot" <sup>14</sup>N nuclear quadrupole resonance detection of trinitrotoluene at room temperature, Appl. Phys. Lett. 89 (2006) 123509,1–3.
- [15] T.J. Humphries, G.J. Merritt, Review article: drug interactions with agents used to treat acid-related diseases, Aliment. Pharmacol. Ther. 13 (3) (1999) 18–26.